
1/30

A Linear Type System
for Lp-Metric Sensitivity Analysis

Victor Sannier Patrick Baillot

FSCD 2024
Tallinn, Estonia

CRIStAL Laboratory, Lille, France



2/30

Overview

Type systems allow us to guarantee certain properties of computer programs.

In this work, we are interested in the concept of sensitivity, which addresses the
question of how much the output changes when the input changes.

This concept has applications in various fields, including privacy protection.



2/30

Overview

Type systems allow us to guarantee certain properties of computer programs.

In this work, we are interested in the concept of sensitivity, which addresses the
question of how much the output changes when the input changes.

This concept has applications in various fields, including privacy protection.



2/30

Overview

Type systems allow us to guarantee certain properties of computer programs.

In this work, we are interested in the concept of sensitivity, which addresses the
question of how much the output changes when the input changes.

This concept has applications in various fields, including privacy protection.



3/30

1. Introduction

Function Sensitivity and Differential Privacy



4/30

Function Sensitivity

Definition
Let (X , dX ) and (Y , dY ) be two metric spaces.
A function f : X → Y is s-sensitive (for s ∈ [0, +∞]) if for all x and x ′ in X , we have:

dY
(
f (x), f (x ′)

)
≤ s · dX (x , x ′) .

Example
Often (Y , dY ) will be (Rn, L1), that is Rn endowed with the following metric:

d1(x, y) =
n∑

i=1
|xi − yi |



4/30

Function Sensitivity

Definition
Let (X , dX ) and (Y , dY ) be two metric spaces.
A function f : X → Y is s-sensitive (for s ∈ [0, +∞]) if for all x and x ′ in X , we have:

dY
(
f (x), f (x ′)

)
≤ s · dX (x , x ′) .

Example
Often (Y , dY ) will be (Rn, L1), that is Rn endowed with the following metric:

d1(x, y) =
n∑

i=1
|xi − yi |



5/30

Sensitivity and Privacy Protection

Example
How much noise to add so that the reply contains no private information?

Hospital server

q : Database → Rn

q(D) + noise : Rn

The more sensitive a query is, the more it depends on the presence of a single
individual, and the more noise we should add to protect their privacy.



5/30

Sensitivity and Privacy Protection

Example
How much noise to add so that the reply contains no private information?

Hospital server

q : Database → Rn

q(D) + noise : Rn

The more sensitive a query is, the more it depends on the presence of a single
individual, and the more noise we should add to protect their privacy.



6/30

Differential Privacy [DMNS06]

Definition
A randomised algorithm q is ϵ-differentially private
whenever for all inputs x and x ′ such that d(x , x ′) = 1,
the outputs q(x) and q(x ′) are ϵ-indistinguishable.

If we know the sensitivity of an algorithm, then we can automatically make it private.

Example theorem (Laplace mechanism)
If q is a s-sensitive query to Rn endowed with the L1 metric,
then the function q + Laps/ϵ is ϵ-differentially private.



6/30

Differential Privacy [DMNS06]

Definition
A randomised algorithm q is ϵ-differentially private
whenever for all inputs x and x ′ such that d(x , x ′) = 1,
the outputs q(x) and q(x ′) are ϵ-indistinguishable.

If we know the sensitivity of an algorithm, then we can automatically make it private.

Example theorem (Laplace mechanism)
If q is a s-sensitive query to Rn endowed with the L1 metric,
then the function q + Laps/ϵ is ϵ-differentially private.



6/30

Differential Privacy [DMNS06]

Definition
A randomised algorithm q is ϵ-differentially private
whenever for all inputs x and x ′ such that d(x , x ′) = 1,
the outputs q(x) and q(x ′) are ϵ-indistinguishable.

If we know the sensitivity of an algorithm, then we can automatically make it private.

Example theorem (Laplace mechanism)
If q is a s-sensitive query to Rn endowed with the L1 metric,
then the function q + Laps/ϵ is ϵ-differentially private.



7/30

Example: Neighbour Classification

Given a database of labelled points in the plane R2,

×
x0 r

we want to predict the label of a point x0 by a majority vote weighted by the distance
to its neighbours: weight : d 7→ 1 − 1/(1 + e−4(d−r)).

weight(0) ≈ 1 weight(r) = 1/2 lim
d→+∞

weight(d) = 0



7/30

Example: Neighbour Classification

Given a database of labelled points in the plane R2,

×
x0

r

we want to predict the label of a point x0 by a majority vote weighted by the distance
to its neighbours: weight : d 7→ 1 − 1/(1 + e−4(d−r)).

weight(0) ≈ 1 weight(r) = 1/2 lim
d→+∞

weight(d) = 0



7/30

Example: Neighbour Classification

Given a database of labelled points in the plane R2,

×
x0 r

we want to predict the label of a point x0 by a majority vote weighted by the distance
to its neighbours: weight : d 7→ 1 − 1/(1 + e−4(d−r)).

weight(0) ≈ 1 weight(r) = 1/2 lim
d→+∞

weight(d) = 0



7/30

Example: Neighbour Classification

Given a database of labelled points in the plane R2,

×
x0 r

we want to predict the label of a point x0 by a majority vote weighted by the distance
to its neighbours: weight : d 7→ 1 − 1/(1 + e−4(d−r)).

weight(0) ≈ 1 weight(r) = 1/2 lim
d→+∞

weight(d) = 0



8/30

Scoring Function

let score (l : label) (db : database ) : real

= db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setmap weight
|> setsum



8/30

Scoring Function

let score (l : label) (db : database ) : real = db

|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setmap weight
|> setsum



8/30

Scoring Function

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)

|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setmap weight
|> setsum



8/30

Scoring Function

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))

|> setmap weight
|> setsum



8/30

Scoring Function

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setmap weight
|> setsum



9/30

Classification Algorithm

Remark

let predict (db : database ) : label
= argmax labels (fun l -> score l db)

where argmax : a set -> (a -> real) -> a.
It returns the best element according to some scoring function.

This implementation might leak private information.

But if we know the sensitivity of score, then we can approximatively maximise it in a
private manner.



9/30

Classification Algorithm

Remark

let predict (db : database ) : label
= argmax labels (fun l -> score l db)

where argmax : a set -> (a -> real) -> a.
It returns the best element according to some scoring function.

This implementation might leak private information.

But if we know the sensitivity of score, then we can approximatively maximise it in a
private manner.



10/30

2. Linear Logic and Type Systems



11/30

Typing Judgements for Function Sensitivity

x : A ⊢ b : B
means that JbK is a 1-sensitive function from JAK to JBK,

[x : A]s ⊢ b : B
means that JbK is a 1-sensitive function from !sJAK to JBK,
(where we define !s(X , dX ) as X endowed with the metric (x , x ′) 7→ s · dX (x , x ′)).
that is a s-sensitive function from JAK to JBK,
[x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A
means that JbK is a 1-sensitive from !s1JA1K × · · · × !snJAnK to JBK,
where the product is endowed with the L1 metric.



11/30

Typing Judgements for Function Sensitivity

x : A ⊢ b : B
means that JbK is a 1-sensitive function from JAK to JBK,
[x : A]s ⊢ b : B
means that JbK is a 1-sensitive function from !sJAK to JBK,
(where we define !s(X , dX ) as X endowed with the metric (x , x ′) 7→ s · dX (x , x ′)).

that is a s-sensitive function from JAK to JBK,
[x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A
means that JbK is a 1-sensitive from !s1JA1K × · · · × !snJAnK to JBK,
where the product is endowed with the L1 metric.



11/30

Typing Judgements for Function Sensitivity

x : A ⊢ b : B
means that JbK is a 1-sensitive function from JAK to JBK,
[x : A]s ⊢ b : B
means that JbK is a 1-sensitive function from !sJAK to JBK,
(where we define !s(X , dX ) as X endowed with the metric (x , x ′) 7→ s · dX (x , x ′)).
that is a s-sensitive function from JAK to JBK,

[x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A
means that JbK is a 1-sensitive from !s1JA1K × · · · × !snJAnK to JBK,
where the product is endowed with the L1 metric.



11/30

Typing Judgements for Function Sensitivity

x : A ⊢ b : B
means that JbK is a 1-sensitive function from JAK to JBK,
[x : A]s ⊢ b : B
means that JbK is a 1-sensitive function from !sJAK to JBK,
(where we define !s(X , dX ) as X endowed with the metric (x , x ′) 7→ s · dX (x , x ′)).
that is a s-sensitive function from JAK to JBK,
[x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A
means that JbK is a 1-sensitive from !s1JA1K × · · · × !snJAnK to JBK,

where the product is endowed with the L1 metric.



11/30

Typing Judgements for Function Sensitivity

x : A ⊢ b : B
means that JbK is a 1-sensitive function from JAK to JBK,
[x : A]s ⊢ b : B
means that JbK is a 1-sensitive function from !sJAK to JBK,
(where we define !s(X , dX ) as X endowed with the metric (x , x ′) 7→ s · dX (x , x ′)).
that is a s-sensitive function from JAK to JBK,
[x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A
means that JbK is a 1-sensitive from !s1JA1K × · · · × !snJAnK to JBK,
where the product is endowed with the L1 metric.



12/30

Fuzz Typing Rules

Such judgements can be derived in a linearly typed lambda-calculus introduced by
Reed and Pierce called Fuzz [RP10].

s ≥ 1
[x : A]s ⊢ x : A

Γ ⊢ a : A ∆ ⊢ b : B
Γ + ∆ ⊢ (a, b) : A ⊗ B

Γ, [x : A]s ⊢ b : B
Γ ⊢ λx .b : !sA ⊸ B

JA ⊸ BK = JAK ⊸ JBK, that is
the space of 1-sensitive functions
from JAK to JBK.

This way, we can derive statically an upper bound on the sensitivity of an algorithm
written in a functional language.



12/30

Fuzz Typing Rules

Such judgements can be derived in a linearly typed lambda-calculus introduced by
Reed and Pierce called Fuzz [RP10].

s ≥ 1
[x : A]s ⊢ x : A

Γ ⊢ a : A ∆ ⊢ b : B
Γ + ∆ ⊢ (a, b) : A ⊗ B

Γ, [x : A]s ⊢ b : B
Γ ⊢ λx .b : !sA ⊸ B

JA ⊸ BK = JAK ⊸ JBK, that is
the space of 1-sensitive functions
from JAK to JBK.

This way, we can derive statically an upper bound on the sensitivity of an algorithm
written in a functional language.



12/30

Fuzz Typing Rules

Such judgements can be derived in a linearly typed lambda-calculus introduced by
Reed and Pierce called Fuzz [RP10].

s ≥ 1
[x : A]s ⊢ x : A

Γ ⊢ a : A ∆ ⊢ b : B
Γ + ∆ ⊢ (a, b) : A ⊗ B

Γ, [x : A]s ⊢ b : B
Γ ⊢ λx .b : !sA ⊸ B

JA ⊸ BK = JAK ⊸ JBK, that is
the space of 1-sensitive functions
from JAK to JBK.

This way, we can derive statically an upper bound on the sensitivity of an algorithm
written in a functional language.



12/30

Fuzz Typing Rules

Such judgements can be derived in a linearly typed lambda-calculus introduced by
Reed and Pierce called Fuzz [RP10].

s ≥ 1
[x : A]s ⊢ x : A

Γ ⊢ a : A ∆ ⊢ b : B
Γ + ∆ ⊢ (a, b) : A ⊗ B

Γ, [x : A]s ⊢ b : B
Γ ⊢ λx .b : !sA ⊸ B

JA ⊸ BK = JAK ⊸ JBK, that is
the space of 1-sensitive functions
from JAK to JBK.

This way, we can derive statically an upper bound on the sensitivity of an algorithm
written in a functional language.



12/30

Fuzz Typing Rules

Such judgements can be derived in a linearly typed lambda-calculus introduced by
Reed and Pierce called Fuzz [RP10].

s ≥ 1
[x : A]s ⊢ x : A

Γ ⊢ a : A ∆ ⊢ b : B
Γ + ∆ ⊢ (a, b) : A ⊗ B

Γ, [x : A]s ⊢ b : B
Γ ⊢ λx .b : !sA ⊸ B

JA ⊸ BK = JAK ⊸ JBK, that is
the space of 1-sensitive functions
from JAK to JBK.

This way, we can derive statically an upper bound on the sensitivity of an algorithm
written in a functional language.



13/30

Other Metrics

Question
What if we want to apply the Gaussian mechanism and know the L2-sensitivity of an
algorithm? More generally, what if we want to work on vectors with the Lp metric?

Recall. dp(x, y) = p
√∑n

i=1|xi − yi |p.



14/30

Bunched Fuzz Types [wABG23]

Bunched Fuzz is an extension of Fuzz with one product constructor ⊗p and one arrow
constructor ⊸p for each p in [1, +∞].

JA ⊗p BK = (JAK × JBK, dp)
JA ⊸p BK = ({ 1-sensitive functions from JAK to JBK }, d∗

p )

Example
Semantically, we have: distance

(
(0, 0), −

)
: Real ⊗2 Real ⊸2 Real.



14/30

Bunched Fuzz Types [wABG23]

Bunched Fuzz is an extension of Fuzz with one product constructor ⊗p and one arrow
constructor ⊸p for each p in [1, +∞].

JA ⊗p BK = (JAK × JBK, dp)
JA ⊸p BK = ({ 1-sensitive functions from JAK to JBK }, d∗

p )

Example
Semantically, we have: distance

(
(0, 0), −

)
: Real ⊗2 Real ⊸2 Real.



15/30

Bunched Fuzz Contexts

Contexts are no longer lists, but trees (or bunches).

Example

p

[x1 : A1]s1
q

[x2 : A2]s2 [x3 : A3]s3

JΓK = JA1K ⊗p (JA2K ⊗q JA3K)



16/30

Bunched Fuzz Typing Rules

Γ ⊢ a : A ∆ ⊢ b : B
Γ ,p ∆ ⊢ (a, b) : A ⊗p B

Γ
(
[x : A]s ,p [x ′ : A]r

)
⊢ a : A

Γ
(
[x : A] p√sp+rp

)
⊢ a[x/x ′] : A

Example

[x : A]1 ⊢ x : A [x : A]1 ⊢ x : A
[x : A]1 ,2 [x ′ : A]1 ⊢ (x , x ′) : A ⊗2 A

[x : A]√2 ⊢ (x , x) : A ⊗2 A



16/30

Bunched Fuzz Typing Rules

Γ ⊢ a : A ∆ ⊢ b : B
Γ ,p ∆ ⊢ (a, b) : A ⊗p B

Γ
(
[x : A]s ,p [x ′ : A]r

)
⊢ a : A

Γ
(
[x : A] p√sp+rp

)
⊢ a[x/x ′] : A

Example

[x : A]1 ⊢ x : A [x : A]1 ⊢ x : A
[x : A]1 ,2 [x ′ : A]1 ⊢ (x , x ′) : A ⊗2 A

[x : A]√2 ⊢ (x , x) : A ⊗2 A



16/30

Bunched Fuzz Typing Rules

Γ ⊢ a : A ∆ ⊢ b : B
Γ ,p ∆ ⊢ (a, b) : A ⊗p B

Γ
(
[x : A]s ,p [x ′ : A]r

)
⊢ a : A

Γ
(
[x : A] p√sp+rp

)
⊢ a[x/x ′] : A

Example

[x : A]1 ⊢ x : A [x : A]1 ⊢ x : A
[x : A]1 ,2 [x ′ : A]1 ⊢ (x , x ′) : A ⊗2 A

[x : A]√2 ⊢ (x , x) : A ⊗2 A



17/30

Metatheoretical Properties

Lack of subject reduction
In Bunched Fuzz, from ⊢ a : A and a ↓ v , we cannot always deduce ⊢ v : A.

Intuitively, this comes from the fact that when we substitute a context Γ for a variable,
the parameters in Γ alter the sensitivity analysis.



18/30

3. Contribution

The Plurimetric Fuzz Type System



19/30

Overview of Plurimetric Fuzz

We consider
the same contexts as Fuzz, but annotated with a parameter p,
the same types as Bunched Fuzz
(in particular ⊗p and ⊸p for all p),
recursive types and a form of subtyping.



20/30

Plurimetric Fuzz Typing Rules

Plurimetric Fuzz judgements have the following form:
(p) [x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A.

Interpretation: J(p) [x1 : A1]s1 , . . . , [xn : An]snK =!s1JA1K ⊗p · · · ⊗p!snJAnK

Example

(p) [x : C ]sa ⊢ a : A (p) [x : C ]sb ⊢ b : B
(p) [x : C ] p

√
sp
a +sp

b
⊢ (a, b) : A ⊗p B

Subtyping rules allow for modifying the parameter of a context
by appropriately adjusting the sensitivity of its variables.



20/30

Plurimetric Fuzz Typing Rules

Plurimetric Fuzz judgements have the following form:
(p) [x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A.

Interpretation: J(p) [x1 : A1]s1 , . . . , [xn : An]snK =!s1JA1K ⊗p · · · ⊗p!snJAnK

Example

(p) [x : C ]sa ⊢ a : A (p) [x : C ]sb ⊢ b : B
(p) [x : C ] p

√
sp
a +sp

b
⊢ (a, b) : A ⊗p B

Subtyping rules allow for modifying the parameter of a context
by appropriately adjusting the sensitivity of its variables.



20/30

Plurimetric Fuzz Typing Rules

Plurimetric Fuzz judgements have the following form:
(p) [x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A.

Interpretation: J(p) [x1 : A1]s1 , . . . , [xn : An]snK =!s1JA1K ⊗p · · · ⊗p!snJAnK

Example

(p) [x : C ]sa ⊢ a : A (p) [x : C ]sb ⊢ b : B
(p) [x : C ] p

√
sp
a +sp

b
⊢ (a, b) : A ⊗p B

Subtyping rules allow for modifying the parameter of a context
by appropriately adjusting the sensitivity of its variables.



20/30

Plurimetric Fuzz Typing Rules

Plurimetric Fuzz judgements have the following form:
(p) [x1 : A1]s1 , . . . , [xn : An]sn ⊢ a : A.

Interpretation: J(p) [x1 : A1]s1 , . . . , [xn : An]snK =!s1JA1K ⊗p · · · ⊗p!snJAnK

Example

(p) [x : C ]sa ⊢ a : A (p) [x : C ]sb ⊢ b : B
(p) [x : C ] p

√
sp
a +sp

b
⊢ (a, b) : A ⊗p B

Subtyping rules allow for modifying the parameter of a context
by appropriately adjusting the sensitivity of its variables.



21/30

Recursive Types

Lemma
For all parameters p and for all metric complete partial orders (CPOs) X and Y , the
spaces X ⊗p Y and X ⊸p Y are also metric CPOs.

Theorem ([AGH+17])
MetCPO⊥, the category of metric CPOs and continuous non-expansive functions, is
cartesian closed and algebraically compact.

As we can consequence we can solve the domain equations associated with the
recursive types of the (deterministic fragment) of the language.



21/30

Recursive Types

Lemma
For all parameters p and for all metric complete partial orders (CPOs) X and Y , the
spaces X ⊗p Y and X ⊸p Y are also metric CPOs.

Theorem ([AGH+17])
MetCPO⊥, the category of metric CPOs and continuous non-expansive functions, is
cartesian closed and algebraically compact.

As we can consequence we can solve the domain equations associated with the
recursive types of the (deterministic fragment) of the language.



22/30

Metatheoretical Properties

Theorem (Subject Reduction)
In Plurimetric Fuzz, from ⊢ a : A and a ↓ v, we can deduce ⊢ v : A.

Theorem (Adequacy)
If ⊢ a : A and JaK ̸= ⊥, then there exists a value v such that a ↓ v.

. . . and metric preservation, etc.



23/30

4. Back to our example

Neighbour classification



24/30

Recall

We want to predict the label of a point x0 by a majority vote weighted by the distance
to its neighbours, that is we want to find the label that maximises the following
function.

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setmap weight
|> setsum



25/30

Sensitivity Analysis of the Scoring Function

We consider the following types:
Point = Real ⊗2 Real, Row = Label ⊗1 Point, Database = Set(Row).

distance (0, 0) is 1-sensitive from Real ⊗2 Real to Real.
The set primitives setfold, setmap, setsum, etc. are all 1-sensitive.

We can derive the following judgement for the scoring function:
⊢ score : Label ⊗1 Database ⊸1 Real.

Theorem

let private_predict (db : database ) : label
= exp_noise labels score db

This implementation is 1-differentially private.

We have proven that it does not leak any private information from the database.



25/30

Sensitivity Analysis of the Scoring Function

We consider the following types:
Point = Real ⊗2 Real, Row = Label ⊗1 Point, Database = Set(Row).

distance (0, 0) is 1-sensitive from Real ⊗2 Real to Real.

The set primitives setfold, setmap, setsum, etc. are all 1-sensitive.

We can derive the following judgement for the scoring function:
⊢ score : Label ⊗1 Database ⊸1 Real.

Theorem

let private_predict (db : database ) : label
= exp_noise labels score db

This implementation is 1-differentially private.

We have proven that it does not leak any private information from the database.



25/30

Sensitivity Analysis of the Scoring Function

We consider the following types:
Point = Real ⊗2 Real, Row = Label ⊗1 Point, Database = Set(Row).

distance (0, 0) is 1-sensitive from Real ⊗2 Real to Real.
The set primitives setfold, setmap, setsum, etc. are all 1-sensitive.

We can derive the following judgement for the scoring function:
⊢ score : Label ⊗1 Database ⊸1 Real.

Theorem

let private_predict (db : database ) : label
= exp_noise labels score db

This implementation is 1-differentially private.

We have proven that it does not leak any private information from the database.



25/30

Sensitivity Analysis of the Scoring Function

We consider the following types:
Point = Real ⊗2 Real, Row = Label ⊗1 Point, Database = Set(Row).

distance (0, 0) is 1-sensitive from Real ⊗2 Real to Real.
The set primitives setfold, setmap, setsum, etc. are all 1-sensitive.

We can derive the following judgement for the scoring function:
⊢ score : Label ⊗1 Database ⊸1 Real.

Theorem

let private_predict (db : database ) : label
= exp_noise labels score db

This implementation is 1-differentially private.

We have proven that it does not leak any private information from the database.



25/30

Sensitivity Analysis of the Scoring Function

We consider the following types:
Point = Real ⊗2 Real, Row = Label ⊗1 Point, Database = Set(Row).

distance (0, 0) is 1-sensitive from Real ⊗2 Real to Real.
The set primitives setfold, setmap, setsum, etc. are all 1-sensitive.

We can derive the following judgement for the scoring function:
⊢ score : Label ⊗1 Database ⊸1 Real.

Theorem

let private_predict (db : database ) : label
= exp_noise labels score db

This implementation is 1-differentially private.

We have proven that it does not leak any private information from the database.



26/30

5. Conclusion



27/30

Contributions

We have introduced Plurimetric Fuzz:
an extension of Fuzz to Lp metrics,
including recursive types and a form of subtyping,
which enjoys the subject reduction property.

Additionally, we have studied translations from and to Fuzz (see the paper for more
information).



28/30

Future work

Future work might address the following problems:
type checking and type inference
(sensitivity constraints are not linear)
a denotational semantics that handles both probability and recursive types.



29/30

References I

Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin ya Katsumata, and
Ikram Cherigui.
A semantic account of metric preservation.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. Association for Computing Machinery, January 2017.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.
Calibrating noise to sensitivity in private data analysis.
In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 265–284.
Springer, 2006.



30/30

References II

Jason Reed and Benjamin C. Pierce.
Distance makes the types grow stronger: A calculus for differential privacy.
In Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming. Association for Computing Machinery, September 2010.

june wunder, Arthur Azevedo de Amorim, Patrick Baillot, and Marco Gaboardi.
Bunched fuzz: Sensitivity for vector metrics.
In Thomas Wies, editor, Programming Languages and Systems: ESOP 2023,
pages 451–478, Cham, April 2023. Springer Nature Switzerland.



1/3

Differential Privacy

Definition
Let M be a randomised algorithm from an input (X , dX ) to an output space Y .
We say that M is ϵ-differentially private whenever for all adjacent inputs x and x ′ (that
is for all x and x ′ in X such that dX (x , x ′) = 1), and for all subsets S of Y ,

Pr[M(x) ∈ S] ≤ eϵ · Pr[M(x ′) ∈ S] + δ .



2/3

Lack of Subject Reduction

In Bunched Fuzz:
Lack of the substitution property
From Γ ⊢ a : A and ∆

(
[x : A]s

)
⊢ b : B, we cannot always deduce ∆(sΓ) ̸⊢ b[a/x ] : B.

This arises from the fact that we obtain different sensitivity analyses depending on
whether the substitution is performed before or after applying a contraction rule.

Lack of subject reduction
From ⊢ a : A and a ↓ v , we cannot always deduce ⊢ v : A.



2/3

Lack of Subject Reduction

In Bunched Fuzz:
Lack of the substitution property
From Γ ⊢ a : A and ∆

(
[x : A]s

)
⊢ b : B, we cannot always deduce ∆(sΓ) ̸⊢ b[a/x ] : B.

This arises from the fact that we obtain different sensitivity analyses depending on
whether the substitution is performed before or after applying a contraction rule.

Lack of subject reduction
From ⊢ a : A and a ↓ v , we cannot always deduce ⊢ v : A.



3/3

Translation mappings

For all parameters p in [1, +∞], the following diagram commutes:

Fuzz PFuzzId

Pp
der

F p
der


	Introduction
	Linear Logic and Type Systems
	Contribution
	Back to our example
	Conclusion
	Appendix
	Appendix


