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Motivation of Differential Privacy

A data analyst queries a database containing sensitive information.
We would like to define what is a privacy-preserving query.
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Motivation of Differential Privacy

A data analyst queries a database containing sensitive information.
We would like to define what is a privacy-preserving query.

v What is the number of entries in the database?

v What is the average salary of employees at General
Informatic?

X How much does Jane Doe earn?

The answer to a privacy-preserving query does not depend on any
individual in particular.
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Formal Definition of Differentially Privacy

Definition (Dwork et al. 2006, Definition 1)

A probabilistic algorithm M is (€, 6)-differentially private if, for any pair
of adjacent databases D and D’, the following condition holds:
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Definition (Dwork et al. 2006, Definition 1)
A probabilistic algorithm M is (€, 6)-differentially private if, for any pair
of adjacent databases D and D’, the following condition holds:

VX . Pr{M(D) € X] < ePr{M(D’) € X] + &

€: privacy loss (the smaller the better),
6: probability that the differential privacy guarantee fails,
(e,6) = (0, 1) provides no differential privacy guarantee.

Differential privacy is compositional.
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Differential Privacy and Noise Addition

Theorem (Laplace mechanism)

If q: Data — R is a query such that for some k

VD,D’.D ~ D’ = |q(D)—q(D")| <k,

then the query
D — q(D) + noise(k)

preserves differential privacy, where the noise is drawn from a Laplace
distribution.
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Theorem (Laplace mechanism)

If q: Data — R is a query such that for some k

VD,D’.D ~ D’ = |q(D)—q(D")| <k,

then the query

D — q(D) + noise(k)
preserves differential privacy, where the noise is drawn from a Laplace
distribution.

If you know how sensitive a request is, you know how to make it
privacy-preserving.
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The Fuzz Calculus

Reed and Pierce have introduced Fuzz: a calculus inspired by (graded)
linear logic Girard (1987).
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The Fuzz Calculus

Reed and Pierce have introduced Fuzz: a calculus inspired by (graded)
linear logic Girard (1987).

[x : Data], Ff(x):R [x:DatalsFg(x):R
[x : Data]rys F f(X)+9(x) : R

A function f between two metric spaces (X, dx) and (Y, dy) is s-sensitive
if for all x and x” in X, we have dy(f(x), f(x’)) < s - dx(x, X’).

Theorem (Soundess)
If [x:o0]sFf: T, then [f] is s-sensitive, and [f] + noise(s) preserves DP.
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2. Interactive Differential Privacy
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Interactive Mechanisms

What if we enable communication through multiple mechanisms,
allowing, for example, the answer from one mechanism to be used to
query another?

8/25



Interactive Mechanisms

What if we enable communication through multiple mechanisms,

allowing, for example, the answer from one mechanism to be used to
query another?

What would serve as the output of the mechanisms?
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Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)

The view View(A || M) of a party A interacting with M consists of
all the messages it receives during the interaction,
its private input, and
the random numbers it generates.
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Interactive Differential Privacy

Definition (Vadhan and Wang 2021, Definition 1.6)

The view View(A || M) of a party A interacting with M consists of
all the messages it receives during the interaction,
its private input, and
the random numbers it generates.

Definition (Vadhan and Wang 2021, Definition 1.7)

M is an (g, 6)-differentially private interactive mechanism if, for every
pair of adjacent datasets D and D’, every adversary A, and every set X,

Pr[ View(A || M(D)) € X] < e€Pr[ View(A || M(D’)) € X] +6.
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Concurrent Composition of Interactive Differential Privacy

Theorem (Vadhan and Wang 2021, Theorem 1.8)

If interactive mechanisms (M, ..., My) are each (€, §)-differentially

private, then their concurrent composition ConComp(My, ..
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Concurrent Composition of Interactive Differential Privacy

Theorem (Vadhan and Wang 2021, Theorem 1.8)

If interactive mechanisms (M, ..., My) are each (€, §)-differentially
private, then their concurrent composition ConComp(Ms, ..., M) is
eke—l

(ke, S=6)-DP.

As with (centralised) differential privacy, an interactive process can be
proven to preserve differential privacy by proving that each of its
components does.

centralised DP : Fuzz :: interactive DP : ?
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3. Process Calculi and Session Types
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The (untyped) m-calculus

Just as A-calculus serves as a model for non-interactive computation, we
need a model for interactive computation.
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The (untyped) m-calculus

Just as A-calculus serves as a model for non-interactive computation, we
need a model for interactive computation.

The m-calculus is a calculus of concurrent processes introduced
by Milner, Parrow, and Walker (1992).

if e then P else Q behaves as P if e evaluates to T, and as Q
otherwise,

k'[e]. P and k?(e). P respectively sends and waits for an expression e
over a channel k, and then continues as process P,

P|| Q is the parallel composition of P and Q,

Example
(k'[1]. k?[x]. .. ) 1 (K?Ix) - KU x4+ x] . )
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Session Types

To statically assert properties of processes, we type the interactions
between them.
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Session Types

To statically assert properties of processes, we type the interactions
between them.

Sessions types were originally introduced by Takeuchi, Honda, and
Kubo (1994) and further developed by Honda, Vasconcelos, and
Kubo (1998).

A session is defined as a sequence of reciprocal interactions
between two parties.

The typing judgements have the form ' P» A (I': types for
variables and session names, A: types for session channels)

Typing is preserved by reduction.
A typable program never reduces into an error.
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4. Session Types

for Interactive Differential Privacy
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New Constructs for the m-calculus

We introduce two new constructs to the standard m-calculus:

Lap,(x). P to sample a random number from the (discrete) Laplace
distribution with parameter b and continue according to P,

15/25



New Constructs for the m-calculus

We introduce two new constructs to the standard m-calculus:

Lap,(x). P to sample a random number from the (discrete) Laplace
distribution with parameter b and continue according to P,

* P for the replication of the process P n times
(this serves as a as a partial replacement for recursive processes).
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Example of a Concurrent Composition

Let M; and M, be two differentially
private mechanisms.

D
/ \\ M; = ki?(f). Lapy,2(r) . ki[f(D) +r]. 0
\ /
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Example of a Concurrent Composition

Let M; and M, be two differentially
private mechanisms.

D
/ \ M; = k;?(f) . Lapy,?(r) . kil[f(D)+1r]. 0
\ / The session between A and M; will
/ have the type (a, &). where
a =7?(Data — Num). INum. end,

M, || M3 is also differentially private, which means that it does not leak
private information when interacting with any adversary.
For example, one possible adversary is

A =kil[f]. k12(y1) . k2'[g(y1)] . k22(y2) . . ..
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Typing Judgements

We consider two forms of typing judgements:

the first one applies to expressions from a standard functional
language.
lrFe:A,

(Expressions are exchanged between processes through channels.)
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Typing Judgements

We consider two forms of typing judgements:

the first one applies to expressions from a standard functional
language.
lrFe:A,

(Expressions are exchanged between processes through channels.)
the second one concerns processes

[FPbA;(€,5).

(Read “P is a well-typed (€, 6)-differentially private process.”)

In practice, we use Fuzz as our expression language to benefit from its
capability for sensitivity analysis in our typing rules.

17/25



Examples of Typing Rules

NlNe:Bool TFP»A;(ep,6p) THOQ>A; (€, 60)

- [T-If]
Iif e then Pelse Q» A;(0,1)
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NlNe:Bool TFP»A;(ep,6p) THOQ>A; (€, 60)
Iif e then Pelse Q» A;(0,1)

[T-If]

NEP1>A1;(€1,61) THP2>Ap(€2,82) A1 <Az
FEPL||P2> AroA;(€1,01)*(€2,62)

where (€1, 81) * (€2, 82) = (€1 + €2, €611€2 - (67 + 62)).

[T-Conc]
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Examples of Typing Rules

NlNe:Bool TFP»A;(ep,6p) THOQ>A; (€, 60)

- [T-1f]
Iif e then Pelse Q» A;(0,1)
Fr'EPyv>Aq;(€1,6 FT'EPy> Ay (€7,6 A <A
1> Aq;(€1,61) 2> Ay (€2, 82) 1 2 [T-Conc]
FTEPLI[P2> AroAp;(€1,61)*(€2,62)
where (€1, 81) * (€2, 82) = (€1 + €2, €611€2 - (67 + 62)).
M bPoAL(E,0) TaFPabAz(6,0) AyxA
1FP1>A1;(€,0) TaFP2>Az(€,0) A 2 [T-Par]

|_1]_[r2|—P1 || P2 > Ay oAy;(€,0)
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Examples of Reduction Rules

We provide an operational semantics in terms of probabilistic automata
with binary trees as labels.
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Examples of Reduction Rules

We provide an operational semantics in terms of probabilistic automata
with binary trees as labels.

(k)
pi i

€0 [R-Conc]
PllQ{—==Pill 0},
elv [R-Val]
Kile]. P Il k2(x). Q{22 P Q[v/x]}
[R-Lap]
Lap,?(x). P{%» P[n/x]}nez
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View of a process

The trace of the execution of P is the unique random variable Trace(P)
such that if P{% *P,-}, then Pr[Trace(P) = tj] = pi.
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View of a process

The trace of the execution of P is the unique random variable Trace(P)

such that if P{%» *P,-}, then Pr[Trace(P) = tj] = pi.

Definition

The view of a process A interacting with a process M, is the following
random variable: View(A || M) = Left(Trace(A || M)).
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Differential Privacy as Approximate Trace Equivalence

We can use the same definition of interactive differential privacy as
Vadhan, where View is formally defined as above.

Definition (Vadhan and Wang 2021, Definition 1.7)

M is an (€, 6)-differentially private interactive mechanism if, for every
pair of adjacent datasets D and D’,
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Differential Privacy as Approximate Trace Equivalence

We can use the same definition of interactive differential privacy as
Vadhan, where View is formally defined as above.

Definition (Vadhan and Wang 2021, Definition 1.7)

M is an (€, 6)-differentially private interactive mechanism if, for every
pair of adjacent datasets D and D’, every adversary A, and every set X,

Pr[ View(A || M(D)) € X] < e®Pr[ View(A || M(D’)) € X] +6.
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Soundness

r|-P1>A1;(€1,51) rl-P2>A2;(€2,52) AN A
[T-Conc]
FEPL|[P2> AroAy;(€1,01)*(€2,62)

Lemma
The typing rule [T-Conc] is sound.

The view of a process in our language behaves in the same manner as
the view of a party.
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Soundness

NEP1>A1;(€1,61) THP2» Ay (€2,82) A1

A
2 [T-Conc]
FEPL|[P2> AroAy;(€1,01)*(€2,62)

Lemma
The typing rule [T-Conc] is sound.

The view of a process in our language behaves in the same manner as
the view of a party.

Hence, as all other rules are sound, our main theorem follows.

Theorem (Soundess)
IfTEM» A; (€, 6), then M is an (€, 6)-differentially private process.
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5. Conclusion
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In this work, we have:

introduced a process calculus similar to the m-calculus with session
types that possesses good metatheoretical properties,
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In this work, we have:

introduced a process calculus similar to the m-calculus with session
types that possesses good metatheoretical properties,

reformulated interactive differential privacy in a formal operational
way,

defined typing rules for tracking interactive differential privacy, and

provided examples, notably from Lyu (2022), demonstrating how
privacy-preserving programs can be implemented in our calculus.
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Future Work

explore alternative methods for handling replication or random
number generation,
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Future Work

explore alternative methods for handling replication or random
number generation,

define interactive differential privacy in terms of approximate
bisimulation rather than approximate trace equivalence.
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More Details on the Fuzz Language

Definition
A function f between two metric spaces (X, dx) and (Y, dy) is s-sensitive
if for all x and x” in X, we have dy(f(x), f(x’)) < s - dx(x, x’).

Types are interpreted as metric spaces:

[A® B] = [A] x [B], and [A & B] = [A] u [B],

['sA] = (m1([A]), s - m2([A])).

[CeA] = (Dist(A), d¢)

etc.
Typing judgements have the form [x1 : A1ls;, ..., [Xn : An]s, F b : B
and mean that (x1, ..., xn) — [b](x1, ..., Xn) is a 1-sensitive function from
!51[[A1]] ®:---® !Sn[[An]] tO [[B]].
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Finite Replication and Recursive Processes

We permit finite process replication instead of recursive processes or
arbitrary replication. This way, a process will never generate an infinite
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Finite Replication and Recursive Processes

We permit finite process replication instead of recursive processes or
arbitrary replication. This way, a process will never generate an infinite
number of random numbers during its execution.

Indeed, we aim to develop a formal framework for interactive
differential privacy, rather than extending the existing notion.

Vadhan and Wang (2021) generate binary strings before the
interaction.

Lyu (2022) explicitly bounds the number of interaction rounds.
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Guess-and-Check (1)

p — L(1/€e);
fori=1,2,...,T do
Receive the next query (f;, Ti);
Yi < L(c/€);
if [fi(X)— Tl +vi = E+ p then
Vi — f(X)+ L(c/€);
report (wrong, v));
t—t+1;
if t = c then halt;
else
| report pass
end
end
Algorithm 1: Private Guess-and-
Check Lyu 2022, Algorithm 1

SVT(c, E, N, D, k, a) =

Lap(l/epsilon)?(rho);
a.write 1;
repeat N times
k?(f, v);
let t = a.read () in
if t >= c then k![0] else
Lap(c/epsilon)?(gamma);
k![abs (f(D) - v) + gamma < E -
end
a.write (t + 1);
end

6/7



Guess-and-Check (II)

Theorem

Given the environment I’ = {c: Nat, E : Int, N : Nat, D : Data, a : Cell(Nat) }

and the typing A = {k : *y?((Data — Int) ® Int). !Int. end}, the following
typing rule is sound:

[T-SVT]

[FSVT(c,E,N, D, k, a)» A;(3€,0) (1)
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